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1. Introduction
High quality and uninterrupted power supply are indispensable 

today [25, 40], because many processes and systems are integrated 
into a global network using Internet of Things (IoT) concept [15, 48]. 
They need a reliable power supply for proper operation [1, 42]. Im-
proper operation, failures and accidents in the power supply network 
not only directly affect the operation of devices and systems, but also 
can indirectly affect the modes of their operation [34, 49]. In general, 
reliability in technology and industry is very important [41], as a con-
sequence, a lot of attention is paid to the development of methods of 
preventing equipment failure [14], its diagnostics and early failure 
detection [12, 22, 51].

However, the development of science and technology needs more 
research, especially in the estimation of equipment lifespan, the fore-

cast of different modes of its operation [27, 28, 35] and process con-
trol methods [7, 24]. Regression analysis is traditionally used for pre-
diction [26, 60], however, the methods of artificial intelligence have 
been actively used recently in this area [13, 44]. This paper is devoted 
to the use of such methods.

Short-term electric load forecasting generally refers to forecasts 
within a year and in units of months, weeks, days or hours, includ-
ing ultra-short-term load forecasts with a period of one hour or even 
a few minutes. The accuracy of forecasting is directly related to the 
normal use of electricity by customers. The improvement of electric 
load forecasting technology not only improves the safety and reliabil-
ity of grid operation but also reduces the cost of power generation 
and maximizes the benefits [39]. Major methods for short-term elec-
tric load forecasting are broadly classified into traditional forecasting 
methods and neural network methods [18, 32]. Traditional forecast-
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ing methods include regression analysis [33] and expert systems [37]. 
These methods are difficult to build effective mathematical models 
and fit highly nonlinear multi-factor electric loads. Neural network 
methods contain regression trees [57], grey prediction [65], support 
vector machines [38] and artificial neural networks. Artificial neural 
network has satisfied fault tolerance rate, nonlinear mapping ability, 
adaptive learning ability and efficiency compared with other forecast-
ing methods. As a result, artificial neural network is widely used in 
the field of electric load forecasting for solving complex nonlinear 
practical problems [29]. 

Extreme learning machine (ELM) has been widely used in the field 
of electric load forecasting as one of artificial neural networks [4, 9]. 
Chen [3] proposed a hybrid intelligent optimization algorithm to op-
timize the parameters of ELM. The method achieves high accuracy 
for short-term electric load forecasting. ELM is feed-forward neural 
network with a single hidden layer [20] and has the advantages of 
simple structure, fast training speed, fewer adjustment parameters, 
strong generalization and nonlinear approximation ability. However, 
there are some defects of ELM in practical applications [54]. Impact 
on prediction results as the setting of relevant parameters in ELM in-
cludes three aspects according to the literature [21]. Firstly, the choice 
of activation function in different instances influences the prediction 
results. The second is the predefined number of hidden layer nodes in 
ELM increases the subjectivity of the process of determining the hid-
den layer nodes in the network. Finally, the randomly defined input 
weight matrix and hidden layer thresholds in ELM lead to the failure 
of partially hidden layer nodes, less specific sample learning and un-
stable performance. 

Some evolutionary algorithms have been used to solve these prob-
lems. For instance, particle swarm optimization algorithm (PSO) [61], 
grey wolf optimizer algorithm (GWO) [10], moth flame optimization 
algorithm (MFO) [56], differential evolution algorithm (DE) [19], 
cuckoo search algorithm (CS) [63] and harmony search algorithm 
(HS) [43] were used to optimize ELM. For parameter optimization 
of ELM, Wei [52] presented a prediction method based on MFO op-
timizing the parameters of random forest and ELM to forecast CO2 
emissions. Yang [58] proposed a differential evolution-based feature 
selection and parameter optimization for ELM in tool wear estimation. 
Wang [55] proposed a hybrid model based on CS algorithm to fore-
cast solar radiation. These works achieved good results. Nonetheless, 
some evolutionary algorithms have complicatedly operators and con-
stantly adjusted parameters, which results in ineffective convergence 
to the global optimum. Therefore, trying more new algorithms to deal 
with this problem is necessary. The tree seed algorithm (TSA) [5] is 
one of the newest heuristic algorithms. Compared with other heuristic 
algorithms, TSA is easy to implement, has fewer tuning parameters 
and takes less time to compute. This method was successfully used 
to solve different engineering optimization problems. Ali [8] adopted 
TSA to solve the optimal power flow problem in large-scale power 
systems. Zhao [64] utilized residual vectors and TSA to identify the 
structural damage. Muneeswaran [36] developed a performance eval-
uation method for the radial basis function neural network based on 
TSA. However, TSA is affected by the search trend (ST) which leads 
to the update falling into local optimum. TSA with the Lévy flight 
is proposed for balancing the global and local search capabilities to 
obtain a better prediction effect [2].

In the paper, LTSA is introduced to optimize initialization param-
eters to improve the prediction performance of ELM. This method 
reduces the training time of network and improves the stability and 
accuracy. The method of ELM combined with LTSA (LTSA-ELM) 
is used to predict the electric load data processed by kernel principal 
component analysis (KPCA). The experimental results show that the 
hybrid method of KPCA, LTSA and ELM (KPCA-LTSA-ELM) pro-
posed in this paper achieves better prediction results. 

The rest of the paper is structured as follows. The basic principle of 
TSA and ELM is illustrated in section 2. The proposed KPCA-LTSA-
ELM is explained in section 3. The experimental results and discus-

sion are demonstrated in section 4. Finally, the paper is concluded in 
section 5.

2. Preliminary

2.1. Extreme learning machine
ELM is a three-layer network composed of the input layer, hidden 

layer and output layer. Each layer is connected by neurons. The struc-
ture diagram of ELM is depicted in Figure 1. 

Fig. 1. The structure diagram of ELM

Let us assume the amount of neurons in the hidden layer is L  . 
The standard form of the model is expressed in equations (1-3):
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where L  is a number of hidden layer, N  is a number of training 
samples, ( )g x  is the activation function, jw  is the input weight, β j  
is the output weight, jb  is the bias of the thj  hidden layer unit, and 

j iw x  is the inner product of jw  and ix .

When the output error is the minimum, it can be calculated by 
equation (2):

 0
N

i i
i

t y− =∑  (2)

Thus, there exists β j , jw  and jb  such that:

 y g w x b i Ni j j i j
j

L
= + =

=
∑ β ( )( , ,..., )1 2

1
 (3)

The matrix form of the model is expressed in equations (4-7):
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where H  is the output matrix of the hidden layer of the neural net-
work, β  is the weight output matrix, Y  is the target output matrix:
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To forecast a single hidden layer neural network, it can be defined 
as follows:
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where 1,2,...,j L= , this is equivalent to minimizing the loss function. 
It can be defined in equations (9-10):
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where +H  is the Moore-Penrose generalized inverse matrix of the 
output matrix of the hidden layer H . When the activation function is 
infinitely differentiable, the connection weight jw  of the input layer 
to the hidden layer and the threshold jb  of the hidden layer can be 
randomly assigned before training and remain unchanged during the 
training. Then the output matrix of the hidden layer H  is determined, 
that is, the connection weight matrix β̂  of the hidden layer to the 
output layer can be determined by equation (10).

2.2. Tree seed algorithm
TSA is a new intelligent optimizer proposed by M.S. Kiran in 2015 

to solve the continuous optimization problems. In nature, trees spread 
their seeds to the surfaces. If these surfaces are considered as the 
search space for the optimization problem, the location of the tree and 
seeds are the possible solutions to the optimization problem. There-
fore, the search for seeds location is an important step in TSA to solve 
the optimization problem. In the primary TSA, each tree simulates the 
solution of the optimization problem in the search space. The fitness 
value of the tree is usually calculated by the objective function or the 
optimization problem. 

Before the algorithm starts searching, equation (11) is used to gen-
erate the latest initial tree positions for subsequent iterations of the 
search. The initial tree positions are the feasible solutions of TSA:

 , , ( )i j j i j j jT Low r High Low= + −  (11)

where ,i jT  represents the corresponding value of the thj  dimension 
of the thi  tree randomly generated in search space. jLow  and jHigh  
are the lower and upper bounds of the thj  dimension, respectively.

The trees generate new seed locations and the number of seeds de-
pends on the size of the population, therefore the number of seeds can 
exceed one. In the analysis of the influence of controlled variables 
on the performance of TSA, the minimum quantity of tree seeds is 
10% of the population size and the maximum quantity is 25% of the 
population size. The amount of seeds produced is completely random 
in TSA.

Then equation (12) is used to optimize the feasible solution for the 
population obtained in the first batch to select the trees with strong 
capability for seed production and the optimal location:

 Best f T i Ni= ( ){ } =min , ,...,


1 2  (12)

where N  is the population size of trees in TSA.

The selected trees will continue to update their positions and pro-
duce new seeds. There are two search modes for seeds, one of which 
focuses on the global search and the other on the local one. 

Two ideal conditions are usually assumed for the search:
(1) The first update of the new seed location is determined by the 

position of the tree and the position of the optimal tree in the tree 
population. This search enhances the local search capability of the 
algorithm. It can be updated by equation (13).

(2) The second update of the new seed location is determined by 
two randomly selected trees with different locations. It can be updated 
by equation (14):

 S T Best Ti j i j i j j r j, , , ,= + × −( )α  (13)

 S T T Ti j i j i j i j r j, , , , ,= + × −( )α  (14)

where ,i jS  is the thj  dimension of the thi  seed which generated by 
the thi  tree, ,i jT  is the thj  dimension of the thi  tree, jBest  is the 
best tree currently obtained, ,r jT  is the thj  dimension of the thr  tree 
randomly selected from the population, and ,i jα  is a scale factor ran-
domly generated within the range of [-1, 1].

The choice of the specific update mode of the seed is regulated by 
the search tendency (ST) parameter within the scope of [0,1]. A larger 
ST value provides powerful local search capability and faster conver-
gence speed. A smaller ST value results in slower convergence but 
strong global search capabilities. According to previous experiments 
[23], when the value of ST is 0.1, most functions can get the optimal 
solution. If the ST generated randomly within the range of [0, 1] is 
less than 0.1, then equation (13) is selected to update each dimension 
of the seed produced by each tree, otherwise equation (14) is used.
The procedure of TSA is described in Algorithm 1.

Algorithm 1 Procedure of TSA

Input: The parameters and the termination condition of TSA.
Output: The best solution obtained by TSA.
Step1: The initialization of the algorithm

Randomly generate tree locations in the D-dimensional search 
space.
Evaluate the tree location by the fitness function.
Select the best solution.

Step2: Search with seeds
     FOR all trees 
      Decide the number of seeds produced for this tree.
      FOR all seeds
       FOR all dimensions 
        IF (rand < ST)
         Update this dimension using equation (13)
        ELSE
         Update this dimension using equation (14)
        END IF
       END FOR
      END FOR
      Select the best seed and compare it with the tree.
      If the seed location is better than the tree location, the seed substi- 
      tutes for this tree.
     END FOR
Step3: Selection of the best solution
     Select the best solution of the population.
     If the new best solution is better than the previous best solu- 
     tion, new best solution substitutes for the previous best solu- 
     tion.
Step4: Testing termination condition
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3. The proposed method

3.1. Kernel principal component analysis 
In order to ease the training of the model to learn the correct load 

variation law for short-term electric load forecasting, we perform fea-
ture extraction on data processed by LTSA-ELM. These re-extracted 
indicators can reflect the information of the original data as much as 
possible, simplifying the network structure and improving the training 
rate of the network.

Since the relationship between the short-term electric load indica-
tors is usually non-linear, the use of linear principal component analy-
sis (PCA) [50, 62] tends to cause the contribution rate of each principal 
component to be too dispersed to find a component with comprehen-
sive capabilities. KPCA [45] circumvents the unascertained nonlinear 
transformation in nonlinear principal component analysis (NLPCA) 
[6] by using the kernel techniques. Therefore, the principal compo-
nents can be obtained in a more concentrated manner, and the evalua-
tion results are more consistent with objective facts. KPCA is applied 
to improve the input of LTSA-ELM, which can effectively reduce 
the input dimension while retaining most of the original information. 
Therefore, we can predict and analyze load data in the actual power 
grid and improve the efficiency and precision of the forecast.

In the process of the kernel principal component analysis, the anal-
ysis results are related to the choice of kernel function. The proper 
selection of kernel functions and parameters can effectively improve 
the overall performance of KPCA. There are two common kernel 
functions:

The Polynomial kernel can be expressed by equation (15):

 [ ]( , ) ( , ) dK x y s x y c= +  (15)

The Gaussian kernel can be expressed by equation (16):

 2( , ) exp( )
2
x y

K x y
e
−

= −  (16)

In the paper, these two functions are selected for calculations. The 
kernel parameter in the polynomial kernel is var 2sign= = , and the 
kernel parameter in the Gaussian kernel is var 281, 1sign= = . The 
selection of kernel functions is explained in section 4.3.

3.2.	 Lévy	flight	distribution	introduced	to	TSA
Lévy flight (LF) [30] is a random walk mode between short-range 

search and occasional long-range search. Similarly, researchers found 
that the Lévy flight can also improve the performance of nature-in-
spired algorithms [46, 47]. 

The LF distribution generates new solutions by randomly select-
ing short or long steps. At present, the LF distribution is widely uti-
lized in many fields for improving the exploration ability, because it 
can increase the variety of species and expand the search range. For 
example, CS algorithm uses the LF for updating position [59], bat 
algorithm uses the LF strategy to mimic the predation behavior of 
bats instead of the speed and position of the original algorithm [31], 
PSO uses the LF to update particle position after iterating multiple 
times [16] etc. 

The position of LF is updated by equations (17-19):
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t

i
t( ) ( ) ( )+ = + ⊕1 α λ  

(17)
 i n=1 2, , ,   

 Levy u t( )λ λ~ = −  (18)

 1 3< ≤λ  

 Levy( )λ φ µ

υ β

~ ∗
1  (19)

where, µ υ,  follow the standard normal distribution β=1.5 . The 
mathematical definition formula of φ  can be expressed by equation 
(20):
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where Γ  is the standard Gamma function.

To improve the global and local search capabilities of TSA, LTSA 
combines the advantages of the LF distribution with TSA for over-
coming the problem of trapping into a local optimum. In the case of 
rand<ST, the LF random walk strategy is introduced when the seed 
is updated. The seed update rule is changed from equation (13) to 
equation (21):

 S T Levy Best Ti j i j i j j r j, , , ,= + ⊕ ( )× −( )α λ  (21)

where evy( )L λ  represents a random search vector whose jump step 
obeys the Lévy distribution, λ λ1 3< ≤( )  is a scale parameter.

The choice of the fitness function directly affects the rate of con-
vergence of the tree algorithm and whether the best solution can be 
found. In the evolutionary search, the algorithm calculates the indi-
vidual fitness values according to the fitness function, and fitness 
value is used to evaluate the pros and cons of the individual tree. 

The tree individual iT


 in the population corresponds to the ar-
rangement of the weights and thresholds of ELM network.

The value of the fitness function can be calculated by equation (22):

 fitness T E T y oi i k k
k

m
( ) ( )
 

= = −( )
=
∑1

2
2

1
 (22)

where: ko  is the actual output of the output layer neurons, ky  is the 
expected output of the output layer neurons, and m  is the number of 
output layer neurons. According to the error function, the weight and 
threshold between each neuron are continuously adjusted to train the 
neural network to achieve the optimal solution.

The procedure of LTSA-ELM is described in Algorithm 2.

Algorithm2 Procedure of LTSA-ELM 

Input: The best solution obtained by LTSA
Output: The predicted results obtained by LTSA-ELM
Step 1: Set the best solution 
  The best solution is the connection weight for the input layer  

 and hidden one and the neuron threshold of the hidden layer.
Step 2: Select an activation function to calculate the output matrix 

 H  of the hidden layer neurons.

      If the termination condition is not met, go to Step 2.
       If the termination condition is met, output the best solution.
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Step 3: Calculate a connection weight matrix β̂  of the hidden layer  
  to the output layer.

Step 4: Predict the results by the output weight matrix and activation  
  function.

The flowchart of KPCA-LTSA-ELM model is shown in Figure 2.

Fig. 2. The flowchart of KPCA-LTSA-ELM model

4. Experiments and Discussions
The experiment verifies the model proposed in the paper from 

three aspects. First, the stability and accuracy of LTSA-ELM predic-
tion were verified by experiments on six UCI public datasets using 
five common methods (section 4.1). Second, KPCA-LTSA-ELM is 
applied to data provided by EUNITE (section 4.2). Third, the relevant 
parameters of LTSA-ELM are selected. Then PCA, KPCA based on 
the Polynomial kernel and KPCA based on the Gaussian kernel are 
applied to evaluate eleven characteristic attributes in data provided 

by EUNITE. The experimental results indicate that KPCA based on 
the Gaussian kernel should be used preferentially in dimensionality 
reduction of short-term electric load data (section 4.3).

4.1.	 Experiments	of	LTSA-ELM	on	UCI	datasets		
To verify the effectiveness of LTSA-ELM, the proposed method is 

compared with some commonly used algorithms: PSO, GWO, MFO, 
and parameters of these algorithms are shown in Table 1. In this paper, 
six UCI standard datasets are used to test the model, as shown in Table 
2. All experimental data sets are mapped to the [-1, 1] by the maxi-
mum and minimum normalization method [17]. Using 5-fold cross-
validation technique [11], each data set is divided into five parts, four 
of which are selected as training sets and one as a testing set. The 
ELM adopts S-type activation function, the selection of activation 
functions is explained in section 4.3. The results of the prediction ac-
curacy (ACC) and the mean square error (MSE) on six UCI public 
datasets are shown in Table 3.

Table 1. Parameters of different algorithms

Parameters Value

Population size 100

Dimension Number of bands

Hidden layer nodes 10

Number of runs for each technique 30

c1,c2 Acceleration coefficient in the PSO algorithm c1 = 2.1, c2 = 1.6

A Convergence factor in the GWO algorithm 2

B Parameter in the MFO algorithm 1

The ST Search trend in TSA algorithm 0.1

The Nvar Parameter in LTSA algorithm 1

The β Parameter in LTSA algorithm 1.5

Table 2. Statistics of the data set

Data set Instances Attributes Forecast 
number

Combined Cycle Power Plant(CCPP) 9568 4 1

Airfoil Self-Noise(ASN) 1503 5 1

Concrete Compressive Strength(CCS) 1030 8 1

Yacht Hydrodynamics(YH) 308 6 1

Wine quality-red(WR) 1599 11 1

Wine quality-white(WW) 4898 11 1

Table 3. Prediction results of five methods on the UCI datasets

Data 
set

ELM PSO-ELM GWO-ELM MFO-ELM TSA-ELM LTSA-ELM

ACC /% MSE ACC /% MSE ACC/% MSE ACC /% MSE ACC /% MSE ACC /% MSE

ASN 98.77 1.51e-16 99.15 7.23e-17 99.15 7.28e-17 99.15 7.29e-17 99.15 7.22e-17 99.45 7.30e-18

CCS 98.99 1.03e-12 99.01 9.72e-13 99.02 9.54e-13 99.02 9.52e-13 99.02 9.66e-13 99.87 9.52e-13

YH 91.61 7.03e-7 98.56 2.08e-8 98.51 2.21e-8 98.35 2.73e-8 98.56 2.07e-8 99.51 2.02e-8

WR 97.50 7.22e-5 99.22 6.03e-9 98.40 2.56e-8 98.89 1.22e-8 98.92 1.17e-8 99.77 5.12e-10

WW 98.50 2.47e-9 99.43 3.28e-11 99.46 2.91e-11 99.41 3.44e-11 99.40 3.61e-11 99.96 4.12e-12

CCPP 99.13 7.48e-19 99.17 6.80e-19 99.65 1.20e-17 99.88 1.38e-18 99.85 7.12e-19 99.99 1.29e-19



Eksploatacja i NiEzawodNosc – MaiNtENaNcE aNd REliability Vol. 24, No. 1, 2022158

As can be seen from Table 3, LTSA-ELM outperforms other com-
peting algorithms on all test data sets. The accuracy of LTSA-ELM on 
the six data sets has reached more than 99%. In addition, LTSA-ELM 
achieves better accuracy especially on YH which is higher than ELM 
without LTSA about 8.6%. Moreover, the comparison between the 
results of TSA-ELM and LTSA-ELM demonstrates that the combina-
tion of Lévy flight and TSA further improve the probability of getting 
the optimal parameters. Meanwhile, LTSA-ELM has better stability 
compared with other algorithms as it gets the minimum results on 
MSE for most datasets. It is proved that the predefined parameters 
optimized by LTSA effectively improve the performance of ELM. 

4.2.	 Experiments	of	KPCA-LTSA-ELM	for	electric	load	data-
sets

The proposed method in this paper is applied to predict short-term 
electric load based on EUNITE competition data [53].

KPCA is used to perform the principal component analysis of sam-
ple data. The electric load data extracted by KPCA is used as the input 
sample of LTSA-ELM model. Among them, 6880 samples are ran-
domly selected as the training data and 1719 samples are used as the 
test data. In order to compare the prediction advantages of each model, 
the mean absolute error (MAE), the average absolute percentage error 
(MAPE), the predicted root mean square error (MSE), the coefficient 
of determination (R2), the test accuracy rate (accuracy) and the test 
time (T) are used as evaluation indicators. Then, the evaluation values 
corresponding to the respective prediction models are calculated. The 
results are shown in Table 4 and Figures 3 and 4.

Fig. 3. Electric load prediction of KPCA-LTSA-ELM

As can be seen from Table 4, the predicted values of KPCA-LTSA-
ELM has the highest prediction accuracy. The mean square error of 
prediction is the minimum compared with the other models. Compared 
with LTSA-ELM, the prediction accuracy of KPCA-LTSA-ELM is 
improved by 1.84%, the mean square error is reduced by 0.00051, 

and the test determination coefficient is increased by 0.01855. This 
shows that the sample data processed based on KPCA eliminates 
the related redundancy between influencing factors. From the stabil-
ity of the model, KPCA-LTSA-ELM outperforms ELM, PSO-ELM, 
GWO-ELM, MFO-ELM, TSA-ELM, LTSA-ELM and SVM models. 
In terms of model convergence, the convergence time of LTSA-ELM 
and KPCA-LTSA-ELM are shorter and more efficient than most other 
models.

As shown in Figure 3, the red line represents the true value, and the 
blue line represents the predicted value of KPCA-LTSA-ELM. The 
predicted value curve and the true value curve can fit well. This indi-
cates that KPCA-LTSA-ELM has a high prediction accuracy. Accord-
ing to Figure 4, the mean square error predicted by each model de-
creases as the number of iterations increases. The convergence curve 
shows that KPCA-LTSA-ELM has smaller training errors and faster 
convergence speed than other models. The model can fully exploit 
the internal implicit laws of the prominent samples and effectively 
interpret the nonlinear relationship between short-term electrical load 
and other influencing factors. Therefore, this model can be applied to 
the field of short-term electric load forecasting to provide a theoreti-
cal guarantee for users to use normal electricity and reduce generation 
costs.

4.3.	 Sensitivity	analysis	of	parameters

4.3.1. Determination of hidden nodes and the type of activation 
function	for	ELM

In order to determine the optimal activation function and the 
number of nodes in the hidden layer, the trial and error method is used 
in this paper. The number of hidden layer nodes is determined as 13 
based on the empirical formula.

Table 4. Analysis of results of each prediction model

Model category MAE MAPE MSE R2 Accuracy(%) T(s)

ELM 0.04448 1.17311 0.00334 0.7902 92.20 0.0468

PSO-ELM 0.04128 0.87613 0.00253 0.8468 95.08 0.0468

GWO-ELM 0.04092 0.89789 0.00272 0.83549 92.90 0.1248

MFO-ELM 0.04113 0.94533 0.00295 0.82159 93.75 0.0312

TSA-ELM 0.03995 0.84463 0.00274 0.83412 93.76 0.0312

LTSA-ELM 0.03892 0.81437 0.00263 0.84077 94.76 0.0312

KPCA-LTSA-ELM 0.03800 0.76717 0.00212 0.85932 96.60 0.0312

SVM 0.05572 1.27575 0.00506 0.69640 92.88 5.7849

Fig. 4. The root mean square error (MSE) curve of each model versus the 
number of iteration 
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ELM has three kinds of activation functions: S-type (Sigmoid 
type), sine function (Sine type), and the hard-threshold type transfer 
function (Hardlim type). The generalization ability of each activation 
function has different prediction effects in different instances. The ex-
pressions of these three activation functions correspond to equations 
(23-25) respectively as below:
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The prediction result of the above three different activation func-
tions is calculated to determine the optimal activation function. The 
results are shown in Table 5:

The Sigmoid activation function has the best prediction effect, fol-
lowed by the Hardlim and Sine activation functions. Therefore, the acti-
vation function of ELM can be determined as the Sigmoid function.

Then, the number of hidden layer nodes is calculated with a test 
interval of [3, 13] to determine the optimal number of nodes in the 
hidden layer. In the paper, the same data sample set is selected. Under 
the same conditions in all aspects, the quantity of neurons in the hid-
den layer is determined by comparing the mean square error. Multiple 
network trainings are conducted on different hidden layer neurons, 
and the mean square error is shown in Table 6. 

From the comparison of the distributions in Table 6, it can be seen 
that the mean square error tends to be minimized when the number of 
neurons in the hidden layer is 13. Therefore, the number of nodes in 
the hidden layer is set as 13.

4.3.2.	Feature	extraction	based	on	KPCA
The eleven characteristic attributes in the short-term electric load 

data of Europe are processed by PCA, KPCA based on the polynomial 

kernel and KPCA based on the Gaussian kernel extract the first six 
principal components. 

The eigenvalue (Eig), the Variance contribution rate (Vcr), and the 
cumulative contribution rate (Ccr) are calculated. In this paper, the cu-
mulative contribution rate of principal component is greater than 96% 
as the standard. When using KPCA (Gaussian kernel) to select fea-
tures, the cumulative contribution rate of the variance of the first six 
principal components reaches 96.05%, which can replace the original 
eleven indicators. The experimental results are shown in Table 7:

As can be seen from the above table, the methods using PCA and 
KPCA reduce the features of training samples inputs, and retains most 
of information. However, there are some differences in the effec-
tiveness of these three methods. The short-term electric load feature 
extraction method based on PCA has the advantages of dimension 
reduction and feature extraction. But its first principal component 
contribution rate is only 29.23%, which is 15.96% lower than KPCA 
based on linear kernel function and 14.3% lower than KPCA based 
on Gaussian kernel function. KPCA expands the research range of 
data characteristics from linear to nonlinear, therefore it can reduce 
the dimensionality and obtain better performance than PCA. KPCA 
based on linear kernel function has the similar principal component 
contribution rate as KPCA based on Gaussian kernel function. How-
ever, KPCA based on Gaussian kernel function extracts fewer features 
than the linear kernel function extraction, consequently, it is better to 
choose the Gaussian radial kernel function.

Table 5. Prediction results of different activation functions

Type of activation 
function

Number of hidden 
layer nodes

Mean square error 
(MSE%)

Sigmoid type 13 0.21398

Sine type 13 0.21848

Hardlim type 13 0.22056

Table 6. Mean Square Errors for different number of neurons in the hidden 
layer

Number of 
hidden layer 

neurons

Number of 
training

Mean square 
error (MSE%)

Decision coef-
ficient (R2)

3 50 0.27461 0.83014

4 50 0.26966 0.84129

5 50 0.25291 0.85116

6 50 0.24351 0.85668

7 50 0.23656 0.86077

8 50 0.22557 0.86195

9 50 0.21156 0.86385

10 50 0.20934 0.86724

11 50 0.20861 0.87075

12 50 0.20852 0.87143

13 50 0.20845 0.87679

Table 7. Comparison table of three analytical methods

Number
PCA KPCA (Linear kernel) KPCA(Gaussian kernel)

Eig Vcr(%) Ccr(%) Eig Vcr(%) Ccr(%) Eig Vcr(%) Ccr(%)

1 3.2150 29.23 29.23 3702.5 45.19 45.19 0.0034 43.53 43.53

2 2.4834 22.58 51.80 2351.2 28.70 73.89 0.0023 29.98 73.51

3 1.9021 17.29 69.10 628.9 7.68 81.57 6.65e-04 8.62 82.13

4 1.0194 9.27 78.36 473.6 5.78 87.35 4.67e-04 6.06 88.19

5 0.9343 8.49 86.86 373.3 4.56 91.90 3.60e-04 4.67 92.85

6 0.5030 4.57 91.43 259.5 3.17 95.08 2.46e-04 3.19 96.05

7 0.3899 3.54 94.97 122.6 1.50 96.57 1.26e-04 1.63 97.68

8 0.2386 2.17 97.14 76.6 0.94 97.51 7.65e-05 0.99 98.67

9 0.1531 1.39 98.53 58.9 0.72 98.23 4.43e-05 0.57 99.25

10 0.0971 0.88 99.42 38.1 0.47 98.69 3.78e-05 0.49 99.25

11 0.0641 0.58 100 27.2 0.33 99.03 2.04e-05 0.26 99.74
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5.	 Conclusion	
In general, a method for short-term electric load forecasting based 

on ELM and the improved TSA is put forward. The performance of 
LTSA-ELM is evaluated on six different dimensional datasets. It is 
demonstrated that LTSA is more suitable for learning the optimal pa-
rameters of ELM in terms of convergence speed, prediction accuracy 
and stability among experimental results. Moreover, KPCA is used to 
extract the features in the experiment for forecasting short-term elec-
tric load in Europe. Experimental results of the test load data show 
that KPCA-LTSA-ELM successfully forecasts the required load at a 
certain time of the day. In conclusion, the combination of ELM and 
LTSA achieves higher accuracy in less time and maintains a better 
balance between prediction efficiency and accuracy. In recent years, 
the scale of electricity consumption continually increases and the 
power system faces greater challenges. This research only focuses on 

short-term electric load forecasting, whereas middle-term and long-
term load forecasting is more valuable to the energy market than 
short-term electric load forecasting. We will explore these issues in 
future research.
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